Внутренняя энергия. количество теплоты. работа в термодинамике

Алан-э-Дейл       22.02.2023 г.

Внутренняя энергия тела

Единица измерения температуры в системе СИ составляет 1 К (Кельвин). Каждый день используют другие единицы измерения — ° C (градусы Цельсия). 0 ° C — это точка замерзания воды, 0K — это так называемый абсолютный ноль, минимально возможная температура. Чтобы перевести градусы Цельсия в Кельвины, нужно добавить к ним 273. Если ВЭ является суммой тепла всех молекул, это тело обладает большей Э.

ВЭ тела можно увеличить, выполняя работу над телом или обеспечивая тепло. Это определённое количество движения, передаваемого между объектами. Тепло течёт от предмета с более высокой температурой к телу с более низкой Т.

Энергия может происходить тремя способами:

  • теплопроводностью;
  • излучением;
  • конвекцией.

Приращение движения микрочастиц тела равно сумме работы, выполненной над телом, и тепла, подаваемого к нему.

∆U = W + Q

Внутренняя энергия формула — это сумма всех видов энергии молекул, из которых он состоит. Они имеют только кинетическую энергию.

Принцип энергетической эквивалентности гласит, что для каждой степени свободы учитывается одна и та же средняя КЭ, равная QD / 2, поэтому среднюю КЭ молекул можно рассчитать по формуле:

(Ek) = i кТ / 2

Где есть так называемое количество степеней свободы, то есть количество координат, которые должны быть указаны для определения положения частицы в пространстве. Для одноатомных молекул и = 3, двухатомных и = 5, других (3 или более атомных) и = 6. ВЭ газа с постоянной массой изменяется только при изменении его температуры. ВЭ может быть изменена путём подачи тепла к газу или выполнения работы с ним.

А формулировка первого закона термодинамики гласит, что изменение ВЭ газа равно сумме тепла, указанного с окружающей средой, и работы, проделанной с ним.

∆U = Q + W

Тепло Q и B может иметь отрицательный или положительный знак. Q имеет, когда газ отдаёт тепло +, и он получает тепло. Если положительный знак, когда работа над газом осуществляется силой, внешней — объём газа уменьшается, и отрицательной, когда газ работает (увеличивается).

При переходе изотермическая ВЭ не изменяется (поскольку температура не меняется), тогда Q + W = 0.

Когда изохорическое преобразование в = 0 (поскольку объём не изменяется), тогда ∆U = Q.

Если Q = 0 (газ не обменивается теплом с окружающей средой), то этот переход называется переходом адиабаты. Тогда уравнение ∆U = W.

Закон сохранения энергии

В физике и правда ничего не исчезает бесследно. Чтобы это как-то выразить, используют законы сохранения. В случае с энергией — Закон сохранения энергии.

Закон сохранения энергии

Полная механическая энергия замкнутой системы остается постоянной.

Полная механическая энергия — это сумма кинетической и потенциальной энергий. Математически этот закон описывается так:

Закон сохранения энергии

Еполн.мех. = Еп + Eк = const

Еполн.мех. — полная механическая энергия системы

Еп — потенциальная энергия

Ек — кинетическая энергия

const — постоянная величина

Задачка раз

Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. Как изменится высота подъёма мяча при увеличении начальной скорости мяча в 2 раза?

Решение:

Должен выполняться закон сохранения энергии:

В начальный момент времени высота равна нулю, значит Еп = 0. В этот же момент времени Ек максимальна.

В конечный момент времени все наоборот — кинетическая энергия равна нулю, так как мяч уже не может лететь выше, а вот потенциальная максимальна, так как мяч докинули до максимальной высоты.

Это можно описать соотношением:

Еп1 + Ек1 = Еп2 + Ек2

0 + Ек1 = Еп2 + 0

Ек1 = Еп2

(m*v^2)/2 = mgh

Разделим на массу левую и правую часть

(m*v^2)/2 = mgh |:m

(v^2)/2 = gh

Из соотношения видно, что высота прямо пропорциональна квадрату начальной скорости, значит при увеличении начальной скорости мяча в два раза, высота должна увеличиться в 4 раза.

Ответ: высота увеличится в 4 раза

Задачка два

Тело массой m, брошенное с поверхности земли вертикально вверх с начальной скоростью v0, поднялось на максимальную высоту h0. Сопротивление воздуха пренебрежимо мало. Чему будет равна полная механическая энергия тела на некоторой промежуточной высоте h?

Решение

По закону сохранения энергии полная механическая энергия изолированной системы остаётся постоянной. В максимальной точке подъёма скорость тела равна нулю, а значит, оно будет обладать исключительно потенциальной энергией Емех = Еп = mgh0.

Таким образом, на некоторой промежуточной высоте h, тело будет обладать и кинетической и потенциальной энергией, но их сумма будет иметь значение Емех = mgh0.

Ответ: Емех = mgh0.

Задачка три

Мяч массой 100 г бросили вертикально вверх с поверхности земли с начальной скоростью 6 м/с. На какой высоте относительно земли мяч имел скорость 2 м/с? Сопротивлением воздуха пренебречь.

Решение:

Переведем массу из граммов в килограммы:

m = 100 г = 0,1 кг

У поверхности земли полная механическая энергия мяча равна его кинетической энергии:

Е = Ек0 = (m*v^2)/2 = (0,1*6^2)/2 = 1,8 Дж

На высоте h потенциальная энергия мяча есть разность полной механической энергии и кинетической энергии:

mgh = E — (m*v^2)/2 = 1,8 — (0,1 * 2^2)/2 = 1,6 Дж

h = E/mg = 1,6/0,1*10 = 1,6 м

Ответ: мяч имел скорость 2 м/с на высоте 1,6 м

Способы заблокировать негативное влияние извне на свою энергию

Знаете ли вы, что энергию можно потратить не только самостоятельно. Многие люди, так называемые «энергетические вампиры», не прочь подзарядиться вашей энергетикой, вызывая вас на эмоции. Чтобы не попасть под влияние такого человека, помните о его слабых сторонах и используйте их:

  • отказ выполнить его просьбу;
  • страх ощущения себя нелюбимым и никому ненужным;
  • страх одиночества, боязнь оказаться брошенным и забытым;
  • боязнь нарушения его личного пространства;
  • страх потерять себя.

Как понятно из самого определения, энергетические вампиры подпитываются от людей энергией, а чтобы получить ее, они стараются вызвать у вас эмоции, как правило, негативные. Все вышеперечисленные страхи они часто используют для своих потенциальных жертв. Ваша задача, если вы распознали такого «вампира», использовать против него его же оружие.

Конечно, указав на боли человека, вы отразите его атаку, но знайте, что можно попытаться решить проблему и по-хорошему: негативные высказывания парируйте позитивными, обратите внимание на положительные моменты в сегодняшнем дне, в его жизни, предложите позитивную тему для разговора. Возможно, перед вами вовсе и не вампир, а просто человек с плохим настроением, тогда вы точно поступите правильно

Если же ваш собеседник хотел подпитаться вашей энергией, его не обрадуют радужные темы для беседы.


Способы заблокировать негативное влияние извне на свою энергию

Иногда бывает так, что при общении с вами человек задевает ваше «больное место», колет точно в цель, вызванные мысли и воспоминания доставляют неприятные эмоции: стыд, гнев, грусть и пр. Эти чувства наносят вам энергетические раны, через которые, словно кровь, сочится ваша энергия.

Не обязательно собеседник, задевший вас за живое, энергетический вампир. Но если это так, вы должны знать, как держать удар и защищаться:

Зная все эти способы, выбирайте для защиты наиболее актуальный в вашей конкретной ситуации, тот, который вам ближе, который получил наибольший отклик внутри вас, и смело отбивайте атаки похитителей энергии. Старайтесь не показывать окружающим свои эмоции, быть спокойным и наполненным, верить, что с вами происходит все самое лучшее, а все события складываются идеальным образом.

Виды теплопередачи

Выделяют три вида теплопередачи: теплопроводность, конфекцию и излучение.

Теплопроводность

Определение

Теплопроводность — способность тел переносить внутреннюю энергию без переноса вещества от более нагретых участков тела к более холодным.

При теплопроводности происходит постепенное увеличение скорости движения молекул. Это возможно только благодаря межмолекулярному взаимодействию. Поэтому теплопроводность в твердых телах происходит быстрее, чем в жидкостях. В газах она осуществляется еще медленнее. Для сохранения тепла используют пористые материалы, в которых много воздуха. Воздух — это смесь газов, поэтому он плохо переводит тепло.

Важно! В вакууме теплопроводность невозможна

Конвекция

Определение

Конвекция — это перенос внутренней энергии, сопровождающийся переносом вещества.

При конвекции теплые слои жидкости или газа поднимаются, а холодные опускаются. Конвекция осуществляется только в жидкостях и газах.

Важно! В твердых телах и в вакууме конвекция невозможна

Излучение

Определение

Излучение — это перенос теплоты в пространстве, осуществляемый в результате распространения электромагнитных волн, энергия которых при взаимодействии с веществом переходит в тепло.

Энергию излучают все нагретые тела. Чем больше нагрето тело, тем сильнее излучение. Теплопередача за счет излучения возможна в любой среде, в том числе и в вакууме.

Темные поверхности хорошо поглощают излучение, но быстро отдают энергию при охлаждении. Зеркальные и светлые поверхности отражают часть излучения и медленно остывают.

Изменения показателей

Стоит подумать о том, как можно изменить термодинамическую внутреннюю энергию тела.

Важно упомянуть несколько явлений.

Если человек потирает руки, то чувствует, что они становятся теплее. Повышение температуры указывает на увеличение ВЭ.

Другим довольно распространённым явлением будет механический нагрев тел, отшлифованных пилкой или наждачной бумагой. Такую работу можно легко выполнить и увидеть эффект дома. Долгое выполнение этой операции может даже привести к ожогам.

Распространённым явлением является нагрев воздуха, содержащегося в автомобильных шинах. Шина деформируется в точке соприкосновения с землёй, поворот колеса приводит к деформации его осколков, а также к сжатию воздуха в нём. Работа дорожно-автомобильной системы в момент деформации шины и сжатия воздуха приводит к увеличению ВЭ молекул газа внутри шины.

Можно попытаться (если у вас есть доступ к соответствующим инструментам) выполнить опыт, где нужно ударять молотком по металлическому стержню, расположенному на твёрдой поверхности. Оказывается, ударная штанга нагревается. Кузнец может нагреть металлический стержень до температуры, при которой он начинает светиться.

Приведённые выше примеры доказывают, что температура тела может повышаться за счёт выполнения работ на нём. Повышение температуры свидетельствует об увеличении ВЭ. Увеличение показателя может быть достигнуто не только при выполнении работ. Можно опустить руки в тёплую воду, а также добиться эффекта увеличения ВЭ.

Механизм передачи ВЭ от тёплой воды к коже рук можно описать следующим образом:

  1. Температура воды выше, чем температура кожи наших рук. Это означает, что молекулы воды имеют более высокую среднюю КЭ.
  2. Прилегающие к коже молекулы воды сталкиваются с частицами кожи. Во время этих столкновений и молекулы воды, и частицы кожи теряют энергию.
  3. ВЭ переносится из воды на кожу рук.

Этот метод передачи называется тепловым потоком, а часть ВЭ, которая была передана в описанном выше механизме, называется теплом. Тепловой поток, который возможен только между телами с разными температурами, всегда исходит от тела с высокими данными и прекращается после выравнивания Т.

Поэтому, если кладут руки в холодную воду, процесс движения микрочастиц происходит в обратном направлении. Частицы кожи, обладающие большой кинетической энергией, при столкновениях с молекулами воды теряют её, а молекулы воды приобретают энергию, то есть она передаётся от кожи к воде. Неправильно утверждение, что этот холод течёт из воды в руки. То, что течёт, является частью ВЭ, называемой теплом. Это, если в описанной выше ситуации ощущается повышение или понижение температуры, зависит от направления, в котором происходит этот поток. Тепловой блок, как и любой тип энергии, в физике — это Джоуль.

При сверлении отверстий в стальной пластине охлаждающая жидкость заливается на буровую площадку. Благодаря этому, плита и дрель не нагреваются чрезмерно. Этот идеальный процесс анализируется с точки зрения изменения внутренней энергии, представленной следующим образом: благодаря работе, ВЭ сверла и дисков увеличивается, но часть этой энергии передаётся теплоносителю в виде тепла.

В результате ВЭ может остаться неизменной — это произойдёт, если её рост, вызванный работой, будет равняться теплу перенесённой жидкости. Если теплопередача жидкости меньше работы сил трения, ВЭ увеличится, но на меньшее значение, чем при отсутствии охлаждения. Если тепло от разговорной жидкости будет больше, то от проделанной работы внутренняя теплота сверла и пластины уменьшится.

Чтобы пластилин стал более пластичным, его нужно нагреть. Можно сделать это, держа его в руках, но результат будет достигнут гораздо быстрее, если дополнительно помять его. Пластилин получает тепло от рук, и в результате его ВЭ растёт. При его разминании делается работа, которая также увеличивает внутреннюю энергию.

Принципы действия тепловых машин

Тепловым двигателем называют устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Основные части теплового двигателя:

  • Нагреватель – тело с постоянной температурой, преобразующее внутреннюю энергию топлива в энергию газа. В каждом цикле работы двигателя нагреватель передает рабочему телу некоторое количество теплоты.
  • Рабочее тело – это газ, совершающий работу при расширении.
  • Холодильник – тело с постоянной температурой, которому рабочее тело передает часть тепла.

Любая тепловая машина получает от нагревателя некоторое количество теплоты ​\( Q_1 \)​ и передает холодильнику количество теплоты ​\( Q_2 \)​. Так как ​\( Q_1 > Q_2 \)​, то совершается работа ​\( A’ = Q_1 – Q_2 \)​.

Тепловой двигатель должен работать циклически, поэтому расширение рабочего тела должно сменяться его сжатием. Работа расширения газа должна быть больше работы сжатия, совершаемой внешними силами (условие совершения полезной работы). Температура газа при расширении должна быть выше, чем температура при сжатии. Тогда давление газа во всех промежуточных состояниях при сжатии будет меньше, чем при расширении.

В реальных тепловых машинах нагревателем является камера сгорания. В них рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Количество теплоты, выделяющееся при сгорании топлива, вычисляется по формуле:

где ​\( q \)​ – удельная теплота сгорания топлива, ​\( m \)​ – масса топлива.

Холодильником чаще всего у реальных двигателей служит атмосфера.

Виды тепловых двигателей:

  • паровой двигатель;
  • турбина (паровая, газовая);
  • двигатель внутреннего сгорания (карбюраторный, дизельный);
  • реактивный двигатель.

Тепловые двигатели широко используются на всех видах транспорта: на автомобилях – двигатели внутреннего сгорания; на железнодорожном транспорте – дизельные двигатели (на тепловозах); на водном транспорте – турбины; в авиации – турбореактивные и реактивные двигатели. На тепловых и атомных электростанциях тепловые двигатели приводят в движение роторы генераторов переменного тока.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Внутренняя энергия газа в запаянном сосуде постоянного объёма определяется

1) хаотическим движением молекул газа
2) движением всего сосуда с газом
3) взаимодействием сосуда с газом и Земли
4) действием на сосуд с газом внешних сил

2. Внутренняя энергия тела зависит от

A) массы тела
Б) положения тела относительно поверхности Земли
B) скорости движения тела (при отсутствии трения)

Правильный ответ

1) только А
2) только Б
3) только В
4) только Б и В

3. Внутренняя энергия тела не зависит от

A) температуры тела
Б) массы тела
B) положения тела относительно поверхности Земли

Правильный ответ

1) только А
2) только Б
3) только В
4) только А и Б

4. Как изменяется внутренняя энергия тела при его нагревании?

1) увеличивается
2) уменьшается
3) у газов увеличивается, у твёрдых и жидких тел не изменяется
4) у газов не изменяется, у твёрдых и жидких тел увеличивается

5. Внутренняя энергия монеты увеличивается, если её

1) нагреть в горячей воде
2) опустить в воду такой же температуры
3) заставить двигаться с некоторой скоростью
4) поднять над поверхностью Земли

6. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится на полке, висящей на высоте 80 см относительно стола. Внутренняя энергия стакана с водой на столе равна

1) внутренней энергии воды на полке
2) больше внутренней энергии воды на полке
3) меньше внутренней энергии воды на полке
4) равна нулю

7. После того как горячую деталь опустят в холодную воду, внутренняя энергия

1) и детали, и воды будет увеличиваться
2) и детали, и воды будет уменьшаться
3) детали будет уменьшаться, а воды увеличиваться
4) детали будет увеличиваться, а воды уменьшаться

8. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится в самолете, летящем со скоростью 800 км/ч. Внутренняя энергия воды в самолёте

1) равна внутренней энергии воды в комнате
2) больше внутренней энергии воды в комнате
3) меньше внутренней энергии воды в комнате
4) равна нулю

9. После того как в чашку, стоящую на столе, налили горячую воду, внутренняя энергия

1) чашки и воды увеличилась
2) чашки и воды уменьшилась
3) чашки уменьшилась, а воды увеличилась
4) чашки увеличилась, а воды уменьшилась

10. Температуру тела можно повысить, если

А. Совершить над ним работу.
Б. Сообщить ему некоторое количество теплоты.

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

11. Свинцовый шарик охлаждают в холодильнике. Как при этом меняются внутренняя энергия шарика, его масса и плотность вещества шарика? Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) внутренняя энергия
Б) масса
B) плотность

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. В бутыль, плотно закрытую пробкой, закачивают насосом воздух. В какой-то момент пробка вылетает из бутыли. Что при этом происходит с объёмом воздуха, его внутренней энергией и температурой? Для каждой физической величины определите характер её изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) объём
Б) внутренняя энергия
B) температура

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

Примечания

  1. ↑ , с. 84.
  2. ↑ , с. 80.
  3. ↑ , с. 31.
  4. Более того, П. А. Жилин считает единственно правильным такой подход к построению/изложению физики сплошных сред, когда «…понятия энергии, температуры, энтропии и химического потенциала вводятся одновременно…» (Жилин П. А. Рациональная механика сплошных сред, 2012, с. 48). «…Нельзя сначала определить внутреннюю энергию, а затем химический потенциал и энтропию. Все эти понятия могут быть введены только одновременно» (Жилин П. А. Рациональная механика сплошных сред, 2012, с. 140)».
  5. ↑ , с. 111.
  6. , с. 105—106.
  7. , с. 13.
  8. , с. 74.
  9. , с. 14.
  10. , с. 13–14.
  11. , с. 21.
  12. Не зависящий от системы отсчёта.
  13. ↑ Элементарная область (она же элементарный объём, она же частица, она же элементарное тело) сплошной среды есть мысленно выделяемый объём сплошной среды (континуума), который бесконечно мал по сравнению с неоднородностями среды и бесконечно велик по отношению к размерам частиц (атомов, ионов, молекул и т. п.) сплошной среды.
  14. ↑ В физике сплошных сред различают аддитивность по геометрическим параметрам (длине растягиваемой пружины, площади поверхности раздела фаз, объёму), аддитивность по массе (экстенсивность) и аддитивность по элементарным телам сплошной среды. Различие в типах аддитивности имеет значение, когда, например, плотность по массе и плотность по телам не выражаются одна через другую, то есть являются независимыми величинами (например, не все рассматриваемые элементарные тела обладают массой или имеет значение распад или агрегация элементарных тел сплошной среды). Так, при образовании трещин на линии разрыва происходит удвоение числа элементарных тел, хотя массовая плотность при этом не меняется. Кинетическая энергия аддитивна по массе, тогда как внутренняя энергия аддитивна по элементарным телам, составляющим систему, но не всегда может рассматриваться как аддитивная функция массы. Для фотонного газа имеет место аддитивность внутренней энергии по объёму.
  15. ↑ , с. 25.
  16. , с. 26.
  17. , с. 59.
  18. , с. 54.
  19. , с. 292.
  20. ↑ .
  21. , с. 223.
  22. , с. 19.
  23. , с. 141.
  24. , S. 384.
  25. ↑ , с. 126.
  26. ↑ , с. 162.
  27. , с. 7.
  28. , с. 12.
  29. , с. 159.
  30. , с. 161—162.
  31. ↑ , S. 33.
  32. ↑ , с. 98.
  33. ↑ , Article «On the dynamical theory of heat» (1851), pp. 174—232.
  34. .
  35. .
  36. .
  37. , Article «On the dynamical theory of heat» (1851), p. 195.
  38. .
  39. , p. 508.
  40. , с. 164.
  41. .
  42. , S. 63.
  43. , с. 34.
  44. , с. 230–231.
  45. , с. 140.
  46. Состояние простой термодинамической системы (газы и изотропные жидкости в ситуации, когда поверхностными эффектами и наличием внешних силовых полей можно пренебречь) полностью задано её объёмом, давлением в системе и массами составляющих систему веществ.
  47. , с. 196.
  48. Дж. У. Гиббс в своей работе «О равновесии гетерогенных веществ» (1875—1876) рассматривает внутреннюю энергию как функцию энтропии, объёма и масс компонентов.
  49. , p. 125.
  50. , с. 236.
  51. ↑ , с. 30.
  52. ↑ , с. 25.
  53. , с. 413.
  54. , с. 61.
  55. , с. 51.
  56. , с. 146.
  57. , с. 65.
  58. , с. 111.
  59. , с. 165.
  60. , с. 157.
  61. , с. 111.

Комментарии

…закон сохранения энергии, несмотря на кажущуюся ясность и простоту, в действительности нельзя считать ни простым, ни ясным. Этот закон выражает постоянство суммы трёх слагаемых: 1) кинетической энергии, 2) потенциальной энергии, зависящей от положения тела, и 3) внутренней молекулярной энергии в формах тепловой, химической или электрической. При этом, как указывает Пуанкаре, такое выражение закона не представляло бы затруднений, если бы между указанными слагаемыми можно было провести строгое различие, т. е. первое слагаемое зависело бы только от скоростей, второе не зависело бы от скоростей и внутреннего состояния тел, а третье зависело бы только от внутреннего состояния тел. На самом же деле это не так, ибо, например, в случае наэлектризованных тел их электростатическая энергия зависит и от состояния тел, и от их положения в пространстве: если же тела ещё и движутся, то их электродинамическая энергия зависит уже не только от состояния тел и их положения в пространстве, но и от их скоростей

Пуанкаре показывает, что в этих условиях выбор функции, которую мы называем «энергией», оказывается условным, и, следовательно, единственная возможная формулировка закона сохранения энергии гласит: «существует нечто, остающееся постоянным».

Важно понимать, что физике сегодняшнего дня неизвестно, что такое энергия. Просто имеются формулы для расчёта определённых численных величин, сложив которые, мы получаем всегда одно и то же число

Это нечто отвлечённое, ничего не говорящее нам ни о механизме, ни о причинах появления в формуле различных членов.

Статью Р. Клаузиуса «О движущей силе теплоты и о законах, которые можно отсюда получить для теории теплоты (Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen)», опубликованную в 1850 году, принято ныне рассматривать в качестве работы, положившей начало термодинамике как научной дисциплине. Использованное в статье Клаузиуса не слишком удачное — по меркам сегодняшнего дня — понятие «Gesammtwärme (полное количество теплоты)» относится к трактовке смысла функции U{\displaystyle U}, но не к названию этой функции.

В некоторых изданиях указывают, что понятие «внутренняя энергия» введено У. Томсоном. Ему же иногда приписывают авторство термина «внутренняя энергия». Говоря о механической энергии, Томсон в статье «О динамической теории теплоты» не упоминает первую часть работы Клаузиуса «О движущей силе теплоты…», в которой Клаузиус ввёл в рассмотрение свою — пока ещё безымянную — функцию U{\displaystyle U}, но даёт ссылку на вторую часть указанной статьи Клаузиуса, опубликованную в следующем номере журнала «Annalen der Physik». Иными словами, на момент сдачи в печать статьи «О динамической теории теплоты» Томсон знал об опередившей эту статью работе Клаузиуса. С точки зрения научного приоритета не имеет значения, представляет ли трактат Томсона опоздавшее с публикацией независимое исследование, либо же статья Клаузиуса послужила для Томсона отправной точкой для развития идей немецкого учёного.

Применение в одном разделе разных правил знаков для теплоты и работы призвано приблизить написание приводимых в разделе формул к их написанию в источниках, из которых эти формулы заимствованы.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.